LivingFog documentation

11/04/2021

fog{guru =

http://www.fogguru.eu/livingfog

LivingFog description
The design of software stack
Software stack running on kubernetes clusters
Software stack on Central Server PC

Installation guide
Preparing the raspberry Pis
Creating Kubernetes Cluster
Installing Chirpstack software and other software stacks
Configuring LoRa gateways
Installing Chirpstack gateway bridge on the LoRa gateways
Configure Chirpstack gateway bridge on the LoRa gateways
Add sensors to Chirpstack Application server

LivingFog Maintenance
Platform monitoring
Manual debugging using SSH

Use case: loT Fablab
Hardware
LoRa Gateways and Fog clusters
Sensors
Data description

NN o U1 NN

11
13
17
18
19

23
23
26

28
28
29
30
31

This documentation describes the LivingFog platform, including the platform description,
the deployment process with our open-sourced project, the basic maintenance of
LivingFog, and a use case of 10T Fablab.

LivingFog description

The design of software stack

The whole system can basically split into 3 levels of abstractions: LoRa sensors and
gateways, Raspberry Pi (RPi) Clusters and Central PC server. No specific software is installed
on LoRa gateways and sensors, but they need to be configured.

Raspberry Pi OS is installed on each RPi as a preparation. Then, Kubernetes 1.18 is installed
and configured on 5 to 10 RPis as a Fog node. The whole structure is shown in Figure 1.

Single Raspberry Pi Kubernetes
Raspberry pi Cluster Cluster

Figure 1: Fog node cluster structure

We used Kubernetes: open-source container orchestration system for automating and
deploying our softwares. General Kubernetes structure is shown in Figure 2. One of the
machines (Raspberry pi in this case) should be set as a master node, while the remaining
ones can join it as a worker. Kubernetes installation and preparation step is explained in
the installation section below.

Master Node

Worker Node Worker Node Worker Node Worker Node

Software o0

Figure 2: Kubernetes cluster structure

From the hardware point of view, the LivingFog platform can be visualized as shown in
Figure 3. The whole structure concerns the sensors connected to specific gateways,
gateway devices connected to specific Raspberry Pi (kubernetes) clusters, and Raspberry Pi
clusters are connected to Central Server PC.

Kubernetes Cluster
Kirlbernetes Cluster

Kk.lhernetes Cluster
Kubernetes Cluster
I#uhernetes Cluster

MQTT broker

l

LoRa application Stack
(Chirpstack)

/ Moniitoring stack
Node-Red Data Parser Prometheus federation

InfluxDB Grafana dashboard

Monitoring stack 7Z

node-exporter, kube-metrics, prometheus etc I

Server PC

<
&

Figure 3: Overview of the LivingFog Platform

There are a number of specific Softwares and stacks deployed and configured on raspberry
pi (kubernetes) clusters and Central Server PC.

Figure 4 shows the internal software structure, relation and data flow between the systems
and components. Each software component is described down below.

Cluster 1

Gateway
with GW bridge

h i

MQTT broker

C

H

Chirpstack AS

FY

h

Chirpstack NS

L Postgres J

Redis

Preprocessor
(Python script)

h i

InfluxDB

—

Monitoring stack
node-exporter, kube-metrics, prometheus etc

Processed sensor data

Server PC

Gateway
with GW bridge

Cluster N
¥
rir MQTT broker W
Chirpstack AS < * Chirpstack NS

I

Postgres G-I

Redis

Preprocessor
(Python script)

|

Y

InfluxDB

Monitoring stack
node-exporter, kube-metrics, prometheus ete)

\ System metrics data

h A

InfluxDB

Pro d sensor data

£y

. Monitoring stack
Prometheus federation

Sytem metrics data

Grafana dashboard

Figure 4: Software structure and relation between the systems.

Software stack running on kubernetes clusters

After the Kubernetes cluster creation, all the necessary softwares is installed. Software and
kubernetes code components are linked here:

https://github.com/FogGuru/livingfog/tree/main/chirpstack-kubernetes.

All the specific configurations for each component are mainly written in configMap.yml files
in their specific module.

Softwares installed on each cluster are:

Chirpstack Application Server - The ChirpStack Application Server is a LoRaWAN
Application Server, compatible with the ChirpStack Network Server. It provides a
web-interface and APIs for management of users, organizations, applications,
gateways and devices.

Received uplink data is forwarded to one or multiple configured integrations.

Chirpstack Network Server - The ChirpStack Network Server is a LoRaWAN Network
Server, responsible for managing the state of the network. It has knowledge of
device activations on the network and is able to handle join-requests when devices
want to join the network.

When data is received by multiple gateways, the ChirpStack Network Server will
de-duplicate this data and forward it as one payload to the ChirpStack Application
Server. When an application-server needs to send data back to a device, the
ChirpStack Network Server will keep these items in queue, until it is able to send to
one of the gateways.

Chirpstack Gateway Bridge - The ChirpStack Gateway Bridge sits between the Packet
Forwarder and MQTT broker. It transforms the Packet Forwarder format (like the
Semtech UDP Packet Forwarder protocol) into a data-format used by the ChirpStack
components.

The Gateway bridge is not installed on RPi clusters. It's installed and configured on
each Gateway device. More detailed explanation about configuration is in the
Installation section.

MQTT broker - MQTT is a publish/subscribe messaging system. In our system, it acts
as a main messaging system, it'’s in control of handling all the major data flow
between Chirpstack Gateway Bridge, Chirpstack Application and Network Servers,
and data parser python code.

Postgres SQL - Acts as a main database for storing information about the devices
connected to the Chirpstack Application server.

Redis - ChirpStack Network Server uses Redis for storing device-session data and
non-persistent data like distributed locks, deduplication sets and meta-data.

https://github.com/FogGuru/livingfog/tree/main/chirpstack-kubernetes

Preprocessor Python code - Series of data parser scripts written on python and
deployed as a docker image. It's role is to parse incoming hexadecimal numbers
from Chirpstack to MQTT, interpret them into readable values according to the
dataframe of each sensor, and forward them back into MQTT broker and InfluxDB.
More detailed explanation of the data parser is in the Data Description section.
InfluxDB - We use InfluxDB to store historical measurements data coming from the
sensors.

Monitoring stack - Its purpose is to monitor each machines (PRi) and kubernetes
cluster and kubernetes namespaces. Main components are Prometheus,
Kube-state-metrics (node-port) and node-exporter. It's sending the metrics to the
central Prometheus running on Server PC.

Software stack on Central Server PC

Server PC is acting as a centralized monitoring machine. All the software components are
linked here: https://github.com/FogGuru/livingfog/tree/main/central-server.
Softwares installed on the PC are:

InfluxDB - We store all the historical sensor measurements coming from multiple
RPi clusters on centralized influxDB as a backup. It's also used as a data source for
creating sensor dashboards on Grafana.

Monitoring stack - Prometheus Federation collecting all metrics from each RPi
device and clusters. Also used as a data source for creating monitoring dashboard
on Grafana

Grafana Dashboard - Open-source, interactive dashboard for managing, visualizing
and analyzing everything.

Grafana dashboard can be found at http://192.168.9.71:3002/ with the username:
admin Password: FogGuru2020

We have prepared 2 main types of dashboards, namely: Sensor data and platform
monitoring. There are 12 types of Sensor data dashboards and it can be found in
la-marina-sensors folder in a dashboard. Also there are 2 types of platform
monitoring dashboards and it can be found in LivingFog platform monitoring folder.

The system monitoring is explained in system management section below.

Software stacks on either RPi clusters or Server PC are deployed as a Kubernetes
deployments, services and pods.

https://github.com/FogGuru/livingfog/tree/main/central-server
http://192.168.9.71:3001/

Installation guide
This section covers the installation and configuration of lora gateway software stack.

Lora gateway software stack architecture was explained in the section above.

(4]

=
PE

(4]
&

Installation and configuration of lora gateway software stack consists of 5 main steps:

1. Preparation of each raspberry pi device in order to create the cluster.

2. Create Kubernetes cluster on every Pi cluster by running the provided ansible script.

3. Installation of actual chirpstack gateway software and other software stack on a
cluster.

4. Configuration of LoRa gateway device to connect to cluster.

5. Enable the connection connection between the cluster, LoRa gateway and sensor
devices using Chirpstack application server user interface (Ul).

Preparing the raspberry Pis

It's possible to acquire a pre-built raspberry pi cluster such as Picocluster, but the
pre-installation step must be carried out on each Raspberry Pi (RPI).

1. If you're starting from installing the OS on RPi, download the latest raspbian buster
image and burn the image using etcher or similar tools. If you're using OS
pre-installed RPi, skip steps 1 and 2 and go to step 3.

a. Run etcher to burn images:

https://www.picocluster.com/
https://www.raspberrypi.org/software/
https://www.balena.io/etcher/

Select image

." balenaEicher iy balena

b. Or run etcher from cli (MAC) as admin to burn images by:

$ sudo /Applications/balenaEtcher.app/Contents/MacOS/balenaEtcher

2. Allow sshin SD cards
$ touch /Volumes/boot/ssh

3. SSHinto each Pis
Note: you have to have access to the same network that you're accessing to the cluster.
$ ssh pi@raspberrypi.local

4. Add the following text inside the file “/boot/cmdline.txt™ with sudo
cgroup_enable=memory

5. Update the "/etc/network/interfaces” file for setting specific IP address. For
example:

auto ethe

iface ethe inet static

address 192.168.1.10

netmask 255.255.255.0

gateway 192.168.1.1

dns-nameservers 192.168.1.1 8.8.8.8

6. Update the “/etc/hosts™ with your cluster's of IP addresses

192.168.1.10 pco
192.168.1.11 pcl
192.168.1.12 pc2

192.168.1.N pcN

7. Edit the hostname and password by editing "raspi-config"
$ sudo raspi-config
8. Reboot

$ sudo reboot

9. Lastly, enable passwordless connection by copying your authorized key from your
machine

$ ssh-copy-id pi@name
The Piis now ready to run ansible scripts.

Creating Kubernetes Cluster

Make sure you have installed Ansible 2.4.0+ on your host machine.

1. Creating GlusterFS volume

We use glusterfs on the pico clusters as the file system on which Kubernetes creates
PersistentVolumes.

| CEEEE] | S | CHEEEC | CEC) |) o:niie] Jeuniiiie] [einiiiiiie] Jeiiiiitie] Jeiiniiitie]
dFSWMmeMFSVoMme FSWMmeMFSVDMmeMFSVane ::> [GlusterFS Volume ‘

Before running Ansible, make sure if there are any gluster volumes running by using the
following command on the master node.

$ sudo gluster volume status

If there are any gluster volumes, first stop and delete them. For example, run the following
command to stop and delete the volumes “~mosquitto_volume”, "postgre_volume" and
“influxdb_volume ™:

sudo gluster volume stop mosquitto_volume
sudo gluster volume stop postgre_volume
sudo gluster volume stop influxdb_volume
sudo gluster volume delete mosquitto_volume
sudo gluster volume delete influxdb_volume
$ sudo gluster volume delete postgre_volume

YT B B B B

Also, make sure that the glusterfs volume replicas are setto “3° when running on
PicoCluster10, and "2° when running on PicoCluster5. Edit all instances of “replicas ™ in file
“roles/glusterfs/master/tasks/main.yml”

10

2. Configuring Host files
Add the system information gathered above into a file called “hosts.ini". For example:

[master]

192.16.35.12

[node]
192.16.35.[10:11]
[kube-cluster:children]
master

node

If you're working with ubuntu, add the following properties to each host
“ansible_python_interpreter='python3':

[master]
192.16.35.12 ansible python_interpreter='python3’

[node]

192.16.35.[10:11] ansible python_interpreter='python3’
[kube-cluster:children]

master

node

Before continuing, edit "~ group_vars/all.yml” to your specified configuration. For example,
we choose to run “flannel" instead of calico, and thus:

Network implementation('flannel', 'calico')
network: flannel

Note: Depending on your setup, you may need to modify “cni_opts ™ to an available
network interface. By default, “kubeadm-ansible™ uses “eth1". Your default interface may
be “eth0".

Note: Edit the "master_vpn" variable in "all.yaml" file. The value should be equal to the IP
address of the master node in the VPN interface.

3. After going through the setup, run the “site.yaml’ playbook:

$ ansible-playbook -i hosts.ini site.yaml

==> masterl: TASK [addon : Create Kubernetes dashboard deployment]
>k 3k 3k 3k ok 5k ok ok 5k >k sk ok >k ok %k ok %k %k ok ok ok %k k %k %k %

==> masterl: changed: [192.16.35.12 -> 192.16.35.12]

==> masterl:

==> masterl: PLAY RECAP
ok ok ok o ok oK K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok oK ok ok oK ok ok ok K ok oK K ok ok K ok ok K ok ok oK ok ok K ok oK

==> masterl: 192.16.35.10 : ok=18 changed=14 unreachable=0
failed=0
==> masterl: 192.16.35.11 : ok=18 changed=14 unreachable=0
failed=0
==> masterl: 192.16.35.12 : ok=34 changed=29 unreachable=0
failed=0

4. Verify cluster is fully running using kubectl:

$ export KUBECONFIG=~/admin.conf
$ kubectl get node

NAME STATUS AGE VERSION
masterl Ready 22m vli.6.3
nodel Ready 20m v1l.6.3
node2 Ready 20m vli.6.3

$ kubectl get po -n kube-system
NAME READY STATUS RESTARTS
etcd-masterl 1/1 Running ©

5. Changing the password

If you need to change the default password of the user picocluster, run from
“kubeadme-ansible " directory:

$ ansible-playbook -i hosts.ini change-password.yml --extra-vars
newpassword=NEWPASSWORD

11

AGE
23m

The cluster is running a Kubernetes cluster and ready for installing the software stack.

Check this repository out for more information on installing and debugging.

Installing Chirpstack software and other software stacks

In order to deploy chirpstack and software stack with kubernetes:
1. Replace your cluster ip with [myclusterIP] value

myclusterlP is the host IP address, acts as a manager in GlusterFS

$ export myclusterIP=192.168.1.10

https://github.com/jazz09/kube-deploy-lora/tree/main/kubeadm-ansible

2. Generate GlusterFS Endpoints files

Edit the IP address range in the "generate_glusterfs_endpoints.sh™ file first using a text
editor

for i in {11..19} -> change your cluster address range here
do
echo "- addresses:

- ip: 192.168.9.%i

ports:

3. Run the glusterFS generation script

$./generate_glusterfs_endpoints.sh

4. Deploy the stack using the script
Run following to deploy all software stack

$ sh ./deploy_all.sh

5. After running the deployment, wait for them to fully deployed, then make sure all
the pods, services and deployments are running

$ kubectl get pods
$ kubectl get deployments
$ kubectl get services

6. After the pod creation, create the databases:

$ sh ./postgres/create_db.sh
$ sh ./influxdb/create_users.sh

7. Deleting
If you wish to delete the stack, run following to delete all:

$ sh ./delete_all.sh

8. Exposing to external IPs

12

Kubernetes services are exposing external IPs to access from outside, you can
enable/disable exposing IP addresses at the end of following files:

port:
: 8000
19090
13000
11883
: 8086

port
port
port
port
port

port:

8080

1880

/chirpstack-application-server/service.yml
/chirpstack-network-server/service.yml
/monitoring/prometheus.yaml
/monitoring/grafana.yaml
/mosquitto/service.yml
/influxdb/service.yml

/nodered/service.yml

End of the file looks like

externallIPs:
- $myclusterIP

Configuring LoRa gateways

LoRa gateways are configured via the web interface.

1

w

Open the web interface of the LoRa gateway using its IP address (E.g.,
https://192.168.9.2/)

lgnore the error regarding the certificate. You should see the log in screen
Login using the user name and password

Go to the LoRaWAN section

13

https://192.168.9.2/

&« C A Notsecure | 192.168.9.2/lora/network

mPower™ Edge Intelligence Conduit - Application Enablement Platform

MTCDTIP-L4| 7A Firmware 5.3.0

TECHO

Home
LORAWAN NETWORKING @
Save and Apply

Network Settings PACKET FORWARDER Packet Forwarder RUNNING
Setup Network Server
cellular Lens Server
Wireless Basic Station
Firewall LoRa Card Information
SMS Gateway EUI Wl 00-80-00-00-A0-00-5E-14

Freguency Band 868

Tunnels i
FPGA Version 31 Upgrade

Administration
LoRa Packet Forwarder Configuration Manual Configuration

Status & Logs
Gateway Info

Commands

uuib Wl 8£665501-60BA-F575-8DE2-ECSEIF86ECSD
Apps Serial Number W 20813434
Help $X1301
Channel Plan Additional Channels 1 (MHz)
EUBES 867.5
Duty Cycle
Duty-Cycle Period
Enable Duty-Cycle
Duty-Cycle Ratio
Basics Intervals

Keep Alive Interval (s)

+| Public 10

5. Select “PACKET FORWARDER" for LoRa Mode
6. Select EU868 for Channel plan
7. Set Upstream and Downstream ports

15

Duty-Cycle Ratio

Basics Intervals

Keep Alive Interval (s)

7 Public 10
Gateway ID Source Stat Interval (s)
Manua 20
Gateway ID Push Timeout (ms)
00800000A0005E14 100
Packet Forwarder Path Autoquit Threshold
fopt/lora/lora_pkt_fwd 60
Server Forward CRC
Network
R Forward CRC Disabled
Manua
Server Address
127.0.0.1 | Forward CRC Error
27

Upstream Port
1782 | Forward CRC Valid

Downstream Port
1782
Beacon Configuration

Info Descriptor
Enable Beaconing

0
Disable Beacon Frequency Beacon Latitude (°)
Hopping 0
Beacon Frequency (MHz) Beacon Longitude (%)
869.525 0

Beacon Power (dBm)
27

Reset To Default

Copyright @ 1995 - 2021 by Multi-Tech Systems, Inc. - All rights rest

8. Leave the rest asis and click on “Submit” to save
9. Go to Setup -> Network Interfaces

< C A Notsecure | 192.168.9.
mPower™ Edge Intelligenc nduit - Application Enablement Platform
TECHO '
Home
NETWORK INTERFACES CONFIGURATION @ SESERIRRSEUE
Save and Apply
LoRaWAN @ -
eth0 WAN IPv4 ETHER Static 192.168.9.2/24 Vi
Network Interfaces wlan0 WAN IPv4 WIFI_AS_WAN DHCP Client rd
WAN Configuration wlanl LAN WIFI_AP - - br0 V
br0 LAN IPv4 BRIDGE Static 192.168.2.1/24 br0 V

Global DNS

10. Click on the edit icon to the right of the “eth0” interface

16

11. Configure as shown in the screenshot with the IP address of the LoRa gateway and
click on “Submit” to save.

= C A Notsecure | 192.168.9.2/setup/network/interfaces/etho

mPower™ Edge Intelligence Conduit - Application Enablement Platform
MTCDTIP-L4| A

TECHO

Home
NETWORK INTERFACE CONFIGURATION - ETHO ®
Save and Apply

LoRaWAN ® Direction

WAN

Network Interfaces IPv4 Settings
Mode Gateway
WAN Configuration
Static 192.168.9.1
Elckallbils IP Address Primary DNS Server
DDNS Configuration 192.168.9.2 192.168.9.1
DHCP Configuration Mask Secondary DNS Server
255.255.255.0 8888
GPS Configuration
SMTP Configuration
SNMP Configuration

12. Go to Administration -> Access Configuration, and check the boxes for SSH and
ICMP access as shown in the screenshot below.

= C A Notsecure | 192.168.9.2/administration/access-configuration

TECHO

MTCDTIP-L4l

Home

ACCESS CONFIGURATION @

Save and Apply

mPower™ Edge Intelligence Conduit - Application Enablement Platform

5.3

LoRaWAN ® Web Server
Setup HTTP Redirect to HTTPS HTTPS Authorization
+| Enabled | Via WAN Session Timeout (minutes)
Cellular .
/| Via LAN Port i
Wireless 1 Via WAN 443
Firewall Port
a0
SMS
HTTPS Security Show |
Tunnels
- . SSH Settings
Administration g
Port
User Accounts +| Enabled 22 < Via LAN /| Via WAN
Self-Diagnostics (beta)
SSH Security Show |
Access Configuration
Reverse SSH Tunnel
RADIUS Configuration
Server Remote Port
X.509 Certificate Enabled 2222
¥.509 CA Certificates Username Authentication Method Password
Password @

Remote Management

Notifications ICMP Settings

Web Ul Custornization +| Enabled +| Respond to LAN < Respond to WAN

Firmware Upgrade SNMP Settings

Package Management | Via LAN Via WAN

Save/Restore Modbus Slave

Debug Options Port

Enabled +| Via LAN
Usage Policy nable . 1502
Gt

13. Click Submit to save
14. Finally, click on “Save and Apply” on the left to save the configuration. If prompted to
restart the gateway, please do.

Installing Chirpstack gateway bridge on the LoRa gateways

1. First, login to the LoRa gateway over ssh
Eg. ssh fogguru@192.168.9.2

2. Update the opkg cache:
sudo opkg update

18

3. Download the latest chirpstack-gateway-bridge .ipk package from:
https://artifacts.chirpstack.io/vendor/multitech/conduit/.

Example (assuming you want to install
chirpstack-gateway-bridge_3.10.0-r1_arm926ejste.ipk):

wget https://artifacts.chirpstack.io/vendor/multitech/conduit/chirpstack-gatewa

4. Install it using the opkg package-manager utility. Example (assuming the same .ipk
file):

opkg install chirpstack-gateway-bridge_3.10.0-r1_arm926ejste.ipk

Configure Chirpstack gateway bridge on the LoRa gateways

The Chirpstack gateway bridge on each LoRa gateway needs to be configured so that it can
connect to the fog clusters.

1. First, login to the LoRa gateway over ssh
Eg. ssh fogguru@192.168.9.2
2. Open the configuration file for editing
sudo nano /var/config/chirpstack-gateway-bridge/chirpstack-gateway-bridge.toml
3. Update the udp port selected for the LoRa packet forwarder
udp_bind ="0.0.0.0:1782"
4. Edit the information about MQTT server (E.g., to connect to MQTT on 192.168.9.10)
Generic MQTT authentication.
[integration.mqtt.auth.generic]
MQTT server (e.g. scheme://host:port where scheme is tcp, ssl or ws)

server="tcp://192.168.9.10:1883"

Connect with the given username

username="USERNAME"

Connect with the given password

password="PASSWORD"

19

5. Save the file and exit
6. Restart the Chirpstack gateway bridge service

sudo /etc/init.d/chirpstack-gateway-bridge restart

Add sensors to Chirpstack Application server

Chirpstack Application server is available on all fog clusters. However, at the moment
sensors are added on three of them.

To open Chirpstack Application server, from your browser open one of the URL of
chirpStack Application, i.e., http://192.168.9.10:8080 with username and password.

After you log in, you will see the screen below

<= @ chirpstacl-(< nization, application, gate or e 0 O admin

-]
— Network-servers
Applications S B2
@ Gateway-profiles
[Organizations
D Name Service-profile Description
2 All users
6 indoor-environment-app service-profile-01 Indoor environment sensor app
Q. APlkeys
3 people-counter-app service-profile-01 people counting app
chirpstack -) _)
4 smart-water-ions-app service-profile-01 Smart water ions app
° Org. settings 2 traffic-counter-app service-profile-01 Traffic counter app
[]
- Org. users 5 weather-station-app service-profile-01 Weather station app
== Service-profiles 1 wind-sensor-app service-profile-01 Wind sensor app
3t Device-profiles
Rows per page: 10 = 1-60f 6

@ Gateways

Applications

N Multicast-nroiing -

To add new sensors,

e First create a device profile. To do so, click on “Device-profiles” on the left, and then
click on the “CREATE" button.

http://192.168.9.10:8080

@ChirpStack Q Search organization, application, gateway or device

= Network-servers
o= Device-profiles / Create
@ Gateway-profiles
By Organizations GENERAL JOIN (OTAA / ABP) CLASSB CLASS-C CODEC TAGS
All users Deviceprofile name *
new-sensor
Q, APlkeys
A name to identify the device-profile.
chirpstack - Network-server *

network-server-01 v

‘The network-server on which this device-profile will be provisioned. After creating the device-profile, this value can't be changed

@ Org. settings
LoRaWAN MAC version *
2 Org.users 1.0.2 -

‘The LoRaWAN MAC version supported by the device

Service-profiles

LoRaWAN Regional Parameters revision *

= Deviceprofiles A .
Revision of the Reglonal Parameters specification supported by the device.
@ Gateways
® v Max EIRP *
- 0
Applications

Maximum EIRP supported by the device
N Multicastgroups Geolocation buffer TTL (seconds)

0

The time in seconds that historical uplinks will be stored in the geolocation buffer.

Geolocation minimum buffer size
q B

The minimum buffer size required before using geolocation (when enabled in the Service Profile). Using multiple uplinks for geolocation can increase the accuracy of the geolocation resulfs;

CREATE DEVICE-PROFILE

e Complete the fields in the “GENERAL" tab

e If the sensor uses OTAA for joining the LoRa network (check with the device
manual), go to “JOIN OTAA/ABP) tab and check the “Device supports OTAA” checkbox

e Click on “CREATE DEVICE PROFILE" to finish

e Create an “application” by going to Applications -> “CREATE"
e Complete the fields, and click on “CREATE APPLICATION” to complete

< 7 ChirpStack &

[]
] Network-servers
Applications / Create

@ Gateway-profiles
fs Organizations

Application name *
2 All users new-application

The name may only contain words, numbers and dashes.
Q, APlkeys

Application description *

New application
chirpstack -

Service-profile *
£t Org. settings service-profile-01 .

The service-profile to which this application will be attached. Note that you can't
change this value after the application has been created.

o Org. users

a= Service-profiles CREATE APPLICATION

ic Device-profiles
@ Gateways
Applications

N Multicast-groups

Add a device to the application

e Click on the newly created application, then create on “CREATE” under the “Devices”
tab

€< @ ChirpStack Q search organization, application, gateway or ¢

E Network-servers

@ Gateway-profiles

| Organizations

- All users

Q, APlkeys
chirpstack

£t Org. settings

- Org. users

a= Service-profiles

it Device-profiles

@ Gateways

ii: Applications

BN Multicast-groups
[]

Applications / indoor-environment-app / Devices /

Create

GENERAL VARIABLES TAGS

Device name *

sensor-name

The name may only contain words, numbers and dashes.

Device description *

Description of sensor

Device EUI *
0004 a3 0b 00 ef d7 17 MSB &

Device-profile *

wind-sensor-profile -

[[] Disable frame-counter validation

Note that disabling the frame-counter validation will compromise security as it
enables people to perform replay-attacks.

CREATE DEVICE

Click on “CREATE DEVICE" after completing the form. You may need to get the
information about the sensor from the vendor.

You will be asked to enter the Keys for the device. Fill the device key you got from

the vendor and click on “SET DEVICE-KEYS”

&< @ Chil’pS‘taCR Search ¢ at pplication, gateway or device ©® 6 amn

E= Network-servers
Applications / indoor-environment-app / Devices / indoor-environment-sensor-01
@® Gateway-profiles m
By Organizations .
DETAILS CONFIGURATION KEYS (OTAA) ACTIVATION DEVI >

2 All users

Q, APlkeys

Application key *
chirpstack v 1615141312 1110 01 02 03 04 05 06 07 08 09 Me G O ©

For LoRaWAN 1.0 devices. In case your device supports LoRaWAN 1.1, update the device-profile first

£ Org. settings

Gen Application key

: Org users T T T T TP @
This key must only be set when the device implements the remate multicast setup specification
_ . . he air (FUOTA). Else leave this field blank
= Service-profiles
-_T'—: Devicep[of”es SET DEVICE-KEYS

@ Gateways

Applications

N Multicast-groups

LivingFog Maintenance

Platform monitoring

Most straightforward way of monitoring or checking the system health is to access
dashboards running on Server PC. After configuring the VPN on your machine, you're able
to access the system monitoring dashboards.

To access dashboards, type the URL of grafana, i.e., http://192.168.9.71:3002/ on your
browser, with the credentials of username and password.

There are 2 main types of dashboards:

1. Sensor data: 12 types of Sensor data dashboards and it can be found in
la-marina-sensors folder in a dashboards management.

2. Platform monitoring dashboards: 3 types of platform monitoring dashboards and it
can be found in LivingFog platform monitoring folder

http://192.168.9.71:3001/

24

[& LivingFog platform monitoring

Kubernetes: Namespace usage

LivingFog platform monitoring

Kubernetes: Pod Overview =3

LivingFog platform monitoring

Picos Monitoring raspberry pi

LivingFog platform monitoring

a. Kubernetes: Namespace usage

This dashboard is mainly used for tracking the usage for hackathon participants. But it can
be used for keeping track of the resource usage of your new namespace.

88 LivingFog platform monitoring / Kubernetes: Namespace usage # <3 i+ & & @O nowtonow ~ || Q || 3 |Ssv

namespace | default ~

Namespaces memory usage

{namespace="defauty [IHBENENENRN 3.676 GB
{namespace="kube-systers [HENNENNNEENENERNERNRURNRNNENRENRNRNRRREENE 15.215GB
{namespace="kubernetes-dashboard"} .. 445,188 MB
{namespace=Togging’) [60.855 MB
{namespace="team1-namespace’} [l 61.539 MB
{namespace="team10-namespace’} [53.652 MB

Figure 7: Kubernetes namespace usage overview

b. Kubernetes: Pod overview

In LivingFog platform, kubernetes pods/deployments/services are the applications
deployed on the clusters.

This dashboard helps keeping track of pods and their activities. It shows the resource
usage and the status of the pods running on specific clusters.

For example, if you notice some pods are failing, you might want to restart that specific pod
manually using ssh connection and kubernetes command.

25

88 LivingFog platform monitoring / Kubernetes: Pod Overview 1 < Wt | B @ B | Olastdhours ~ || Q || Q| 10sv

Cluster | Cluster1 ~ Namespace | default ~ Fod | All ~ Container | All ~

~ POD Dashboard

POD Count (Namespace) Pod Status
0 current
7.50 == Failed 1]
8 5 == Pending o
250 == Running 8
- 0
12:30 13:00 13:30 14:00 14:30 15:00
Pod Restart
B current
15 == chirpstack-application-server 1]
10 == chirpstack-network-server 1]
5 == data-parser 18
0 = (nflux 0
12:20 12:30 1240 1250 1300 1370 1320 1330 1340 1350 1400 1410 1420 1430 1440 1450 15:00 1510
Figure 8: Kubernetes pods status
88 LivingFog platform monitoring / Kubernetes: Pod Overview tr <5 i+ & | & | | Olast3hours v | Q | 3 |10s+
+ POD Resource
CPU CPU Usage
0.600 max avg current
0.400 == Current: chirpstack-application-server-6cf695ff77-whblf 0.0209 00132 0.0106
== Current: etwork-server-5¢ Ihi| 0.0136 0.00916 0.00918
0.097 core 0200 ’ i
== Current: data-parser-6c8c47d7ff-pS5rj) 0.0114 0.00714 0.00753
0 == Current: influx-574cfd7496-228bn 0.0528 0.0369 0.0399
13:00 14:00 15:00
Memory Memeory Usage o]
14008 max avg current
954 MiB == Current: chirpstack-application-server-6¢f695ff77-whblf 10.9MiB 10.9MiB 10.9 MiB
1 65 MiB == Current: chirpstack-network-server-5: Ihip 6.35MIB 6.35MiB 6.35MiB

477 MiB . . .
== Current: data-parser-6c8cd7d7f-pSrj 27.3MiB 27AMIB 27.2MiB

0B _ Current: influx-574cfd7496-228bn 284MIE 281MiB 28.0MiB
13:00 14:00 15:00

Network RX/TX Total (bytes/sec) POD Network 5]
20kB/s max avg current
15 kB/s = TX:data-parser-bcBed7d7fi-pSrj 446B/s 345B/s 321B/s
36 49 kB /s 10kB/s = TX:nodered-7b6cf58d46-5m2wf 544B/s G508B/s 448B/s
.
5kBfs T T

>

o = - < influx-574cfd7496-228bn 277B/s 231B/s 213B/s

0B/s u == TX:chirpstack-application-server-6¢f695ff77-whblf 16 7kB/s 6.35kB/s 6.14kB/s
13:00 14:00 15:00

=

Figure 9: Kubernetes pods resource usage by cluster
c. Picos monitoring

In the LivingFog platform, Fog clusters are built on Raspberry Pi machines. Picos Monitoring
dashboard will help monitor the activities of the machines.

You can check the performance and the status of the clusters by selecting the Cluster and
Node.

26

88 LivingFog platform monitoring / Picos Monitoring # 5 | B © |2 | @lastiSminutes « Q| O | 10sv
datasource | Prometheus ~ Cluster | All + Node | All ~
~ Summary
Memory usage CPU usage (2m avg) Filesystem usage
. 22.9% o 6.57% P12.59%
Used Total Used Total Used Total
42.83 GiB 186.91 GiB 13.06 cores 199.00 cores 446.18 GiB 3.46TiB

> Memory (1 panel)
> CPU (1 panel)

> Network I/Q (2 panels)

Figure 10: Raspberry Pi machines resource usage by cluster

Note: If you want to add a new dashboard, you can add it using Prometheus and InfluxDB
data sources, which are already provided.

Note: There are no alert systems implemented yet. Alerts are added and configured in
the Alert Tab of any dashboard graph panel, letting you build and visualize an alert using
existing queries. To persist your alert rule changes remember to save the dashboard.

Manual debugging using SSH

All the debugging and stopping/starting the services running on the machines should be
done using SSH. Otherwise, you have to be physically present on site to check the platform.

By configuring the VPN on your machine, you're also able to connect to most of the
hardware using SSH connection. Table 3 shows available machines and their SSH
credentials.

Log in to desired machine using SSH by:

$ ssh [username]@[IP_address]
[username]@[IP_address]'s password: [password]
For example:

$ ssh picocluster@192.168.9.10

picocluster@l92.168.9.10's password:

Software stacks on either RPi clusters or Server PC are deployed as Kubernetes
deployments, services and pods. After logging in using SSH to the certain machine, you will

be able to use kubernetes commands to check if the pods are running.

For example:

picocluster@pc@:~ $ kubectl get pods

NAME READY
chirpstack-application-server-6cf695ff77-whblf 1/1
chirpstack-network-server-548dcb59c9-clhlp 1/1
data-parser-6c8c47d7ff-p5rjj 1/1
influx-574cfd7496-228bn 1/1
mosquitto-6c88b5b6f4-t2kp] 1/1
nodered-7b6cf58d46-5m2wf 1/1
postgres-7747f9b7bf-j72qn 1/1
redis 1/1
yourpod 1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

Same for starting/stopping pods/services/deployments. To start/stop/restart the

pods/services/deployments:

You can run the following commands one by one to start the deployments on RPis

kubectl apply -f ./mosquitto/storage.yml
kubectl apply -f ./mosquitto/configmap.yaml
kubectl apply -f ./mosquitto/deployment.yml

B B B B

kubectl apply -f ./influxdb/storage.yml
kubectl apply -f ./influxdb/deployment.yml

B B A A

-

kubectl apply -f ./postgres/
kubectl apply -k redis/.

+»

$ kubectl apply -f ./chirpstack-network-server/configMap.yml
kubectl apply -f ./chirpstack-network-server/deployment.yml

-

envsubst < ./mosquitto/service.yml | kubectl apply -f -

envsubst < ./influxdb/service.yml | kubectl apply -f -

kubectl apply -f ./mosquitto/mosquitto-glusterfs-endpoint.yaml

kubectl apply -f ./influxdb/influxdb-glusterfs-endpoint.yaml

27

AGE
4d5h
4d5h
12d
12d
12d
26d
4d5h
26d
41d

$ envsubst < ./chirpstack-network-server/service.yml | kubectl apply -f -

"B B B

kubectl
kubectl
kubectl
kubectl

A2 A

B B

apply -
apply -
apply -
apply -
envsubst < ./monitoring/grafana.yaml | kubectl apply -f -

envsubst < ./monitoring/prometheus.yaml | kubectl apply -f -

28

kubectl apply -f ./chirpstack-application-server/configMap.yml
kubectl apply -f ./chirpstack-application-server/deployment.yml
envsubst < ./chirpstack-application-server/service.yml | kubectl apply -f

f ./monitoring/configmap.yaml

f ./monitoring/kube-state-metrics.yaml
f ./monitoring/node-exporter.yaml

f ./monitoring/rbac.yaml

kubectl apply -f ./nodered/deployment.yml
envsubst < ./nodered/service.yml | kubectl apply -f -

You can run the following commands to stop each deployments RPis

-

kubectl
kubectl
kubectl
kubectl
kubectl
kubectl
kubectl
kubectl
kubectl
kubectl

R i R R L N A -

delete
delete
delete
delete
delete
delete
delete
delete
delete
delete

-f ./mosquitto/

-f ./influxdb/

-f ./postgres/

-k redis/.

-f ./chirpstack-network-server/

-f ./chirpstack-application-server/

-f ./monitoring/

-f ./nodered/

pvc mosquitto postgres-pv-claim postgresinit-pv-claim
pv mosquitto-pv-volume $ postgres-pv-volume

postgresinit-pv-volume

FogGuru has applied the LivingFog platform in IoT Fablab in Las Naves, where a number
of 1oT heterogeneous sensors are installed in La Marina de Valéncia to measure and
process data about water quality, wind, sea wave, outdoor and indoor environment,
people counter, and traffic.

Hardware

The hardware used in loT Fablab are listed as follows:

LoRa Gateways and Fog clusters

No

1 LoRa Gateway 1

2 LoRa Gateway 2

3|LoRa Gateway 3

4 LoRa Gateway 5

10

11

12

Device

Pico Cluster 1

Pico Cluster 2

Pico Cluster 3

Pico Cluster 4

Pico Cluster 5

Pico Cluster 6

Pico Cluster 7

Desktop server

Model

Multitech
MTCDTIP-L4E1-267A-868 LTE Cat
4 AEP Conduit IP67

Multitech
MTCDTIP-L4E1-267A-868 LTE Cat
4 AEP Conduit IP67

Multitech Conduit -
MTCDT-L4E1-247A-868-EU-GB

Multitech Conduit -
MTCDT-L4E1-247A-868-EU-GB

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

Pico 5 Raspberry P14 4GB + 160
GB of SD storage

Pico 5 Raspberry Pl4 4GB + 160
GB of SD storage

Dell Optiplex 9020 Desktop PC
Computer Intel Core i7-4770
3.40 Ghz 32GB Ram 240GB SSD
+1Tb SSHD

IP Address / IP

Address Range |Location

192.168.9.2

192.168.9.3

192.168.9.4

192.168.9.6

192.168.9.10 -
192.168.9.19

192.168.9.20 -
192.168.9.29

192.168.9.30 -
192.168.9.39

192.168.9.40 -
192.168.9.49

192.168.9.50 -
192.168.9.59

192.168.9.60 -
192.168.9.64

192.168.9.65 -
192.168.9.69

192.168.9.71

Varadero

Tinglado 2

Tinglado 5

Tinglado 2

Varadero

Varadero

Varadero

Varadero

Varadero

Varadero

Varadero

Varadero

29

30

Sensors

No |sensor name Model Location (latitude, longitude)

Parametric Radar People
Counter with LoORaWAN® for
Outdoor Applications
1|PEOPLE COUNTER 1 PCR2-EU868-OD 39.46274,-0.32237

Parametric Radar People
Counter with LoORaWAN® for
Outdoor Applications
2 PEOPLE COUNTER 2 PCR2-EU868-OD 39.4614, -0.33023

Parametric Radar People
Counter with LoORaWAN® for
Outdoor Applications
3 PEOPLE COUNTER 3 PCR2-EU868-OD 39.4602, -0.33219

Parametric Radar People
Counter with LORaWAN® for
Outdoor Applications

4 PEOPLE COUNTER 4 PCR2-EU868-0OD 39.45685, -0.32967
5 WIND SENSOR 1 DecentLab DL-ATM22 39.46097, -0.32424
6 WIND SENSOR 2 DecentLab DL-ATM22 39.46102, -0.33087
7 WIND SENSOR 3 DecentLab DL-ATM22 39.45655, -0.32962

Libelium Smart Water
8 SMART WATER LoRaWAN 39.45878, -0.33034

Libelium Smart Water lon
9 SMART WATER ION LoRaWAN 39.46105, -0.32553

10|/ TRAFFIC COUNTER 1 Parametric TCR-LS LoRaWAN 39.46273, -0.32237
11 TRAFFIC COUNTER 2 Parametric TCR-LS LoRaWAN 39.46253, -0.32424
12 TRAFFIC COUNTER 3 Parametric TCR-LS LoRaWAN 39.45969, -0.33236
13| TRAFFIC COUNTER 4 Parametric TCR-LS LoRaWAN |39.45654, -0.33011
14 TRAFFIC COUNTER 5 Parametric TCR-LS LoRaWAN |39.45568, -0.32786
15 TRAFFIC COUNTER 6 Parametric TCR-LS LoRaWAN 39.45946, -0.33265
16 TRAFFIC COUNTER 7 Parametric TCR-LS LoRaWAN |39.45639, -0.33044
17 TRAFFIC COUNTER 8 Parametric TCR-LS LoRaWAN 39.45564, -0.33004
18| TRAFFIC COUNTER 9 Parametric TCR-LS LoRaWAN |39.45571, -0.32895

31

19 TRAFFIC COUNTER 10 Parametric TCR-LS LoRaWAN

Libelium-Gill-EX-Machina
Smart Weather Forecast

20 WEATHER STATION LoRaWAN Solution Kit 39.46125, -0.32293
INDOOR
ENVIRONMENT SENSOR 'enLink Air Wireless Air

211 Quality Sensor 39.4611, -0.3242
INDOOR
ENVIRONMENT SENSOR 'enLink Air Wireless Air

22|12 Quality Sensor 39.46086, -0.33106
INDOOR
ENVIRONMENT SENSOR 'enLink Air Wireless Air

233 Quality Sensor 39.45595, -0.32859

Sea current and wave
24 sensor Nortek AWAC 1MHz 39.45947, -0.30955

Data description

Taking the sensors installed in La Marina as examples, Figure 5 shows the flow of data
collection in our fog platform. First, all the sensors and Lora gateways are configured and
installed in La Marina. Next, each sensor sends collected data through LoRaWAN to the
Chirpstack that it joins during the initialization. The uploaded sensor data is in json
format following LoRaWan protocol. Then a data parser decodes the data into
hexadecimal numbers and interprets them into readable values according to the
dataframe of each sensor. Last, the readable sensor data are sent to MQTT with a unique
topic and also used to update the database in influxDB. Both the real-time data in MQTT
and historical data in influxDB will be used to design fog applications in hackathon and
Fablab.

32

Realtime Data | |~ Hackathon

LivingFog

- Fablab
T 1
| ¢ ChirpStack | k
a 3 e Ll P
' | Application | Data |
: ! Parser Hode-RED
! ! InfluxDB
i NEEME A E:::‘rk i User Account \

P!atfcrm \)
) Infrastructure \ """"

i Lﬂra Gatewa:f Historical Data
—Gateway Bridge| |
4 Lora Gateway :\

Sensors Sensors Sensors

Sensors installed in La Marina

Figure 5: The flow of data collection in LivingFog.

The locations of sensors and gateways are shown as Figure 6 and are available on Google
Maps
https://www.google.com/maps/d/u/0/viewer?hl=en&mid=1gNpP2YknZCjX8HSA3X9bH20
DiGkwpuOx&l1=39.45943089803211%2C-0.3219128849847097&z=16

https://www.google.com/maps/d/u/0/viewer?hl=en&mid=1qNpP2YknZCjX8HSA3X9bH20DiGkwpuOx&ll=39.45943089803211%2C-0.3219128849847097&z=16
https://www.google.com/maps/d/u/0/viewer?hl=en&mid=1qNpP2YknZCjX8HSA3X9bH20DiGkwpuOx&ll=39.45943089803211%2C-0.3219128849847097&z=16

FOG GURU - La Marina .. Q

M4 sensors and gateways) a

© People counter 1 s g 0 Vicent Gai oy 1t de ey

© People counter 2

SaUiA euRbnz p 0180

© People counter 3 eon a
© People counter 4 8
© Traffic sensor 1 l

© Traffic sensor 2 v £ ST e Francese [«}
© Traffic sensor 3 $ e o o
© Traffic sensor 4 Bl 3 V - R

© Traffic sensor 5 3
© Traffic sensor &
© Traffic sensor 7
© Traffic sensor 8

© Traffic sensor 9

© Traffic sensor 10

R LoRa outdoor gateway 1 | geriand 8
R LoRa outdoor gateway 2

R LoRa gateway 3

© Wind sensor 1 o 8

© Wind sensor2 R) ¢
$ n - Valency
\ § 4o cia
© Wind sensors 0 L o
(*] g g,
© Indoor environment sensor 1 a N %;,%
950 %,
© Indoor environment sensor 2 e () €0 o (2
© Indoor environment sensor 3 °
E g 3
© eaer s b
leather station S > .
%%
© Smart Water lons % % %‘
&
© Smart Water + 5 77% > %5
1 % 2 9%
© Sea wave AWAC a a " 3 Google MyMaps &
Map data ©2021 Inst. Geogr. Nacional Terms 100m L [2

Figure 6: The locations of sensors and lora gateways

Table 1 shows the sensors and the measured parameters.

No. | Device name Parameters

1 Sea wave sensor Sea wave height
Current speed
Pressure
Temperature

2 Outdoor environment sensors Average wind direction

Average wind speed

Precipitation total

Precipitation intensity

Solar radiation

Barometric pressure

Absolute humidity

Relative humidity

Air density

Air temperature

3 Wind sensor Wind speed

Wind direction

Maximum wind speed

Air temperature

Tilt angle X orientation

34

Tilt angle Y orientation

North wind speed

East wind speed

Battery voltage

4 Indoor environment sensors

Temperature

Humidity

Light level

VOC's

bVOC

Barometric Pressure

CO2

02

PM1.0, 2.5, 4.0,10.5

5 People counter

Right To Left

Left To Right

Left To Right SUM

Right To Left SUM

SBX BATT

SBX PV

DIFF

TEMP

6 Water quality sensor

Water pH

Dissolved oxygen

Water Conductivity

ORP(P&S!SOCKETE)

Water Temperature

Silverlons

Chloridelons

Fluoridelons

7 Traffic sensor

SBX BATT

SBX PV

TEMP

Left CNT (the following parameters are for levels from 0 to 3

Left AVG

Right CNT

Right AVG

Table 1: The sensors deployed at La Marina and parameters measured

Furthermore, for each type of sensor, their detailed information about the sensor type,
frequency, MQTT topics, and sample data are provided in Table 2.

55

Sensor type Sensor data Freque MQTT topics
ncy/s

wind "Windspeed": "0.28", "Windspeed unit": "m/s", 60 wind/73-1
"Winddirection": "246.9", "Winddirection unit": "°", wind/73-2
"Maximumwindspeed": "0.35", wind/73-3
"Maximumwindspeed unit": "m/s", "Airtemperature":
"12.3", "Airtemperature unit": "°C",
"TiltangleXorientation": "-2.8",
"TiltangleXorientation_unit": "",
"Tiltangle Yorientationn": "-3.0",
"Tiltangle Yorientationn_unit": """, "Northwindspeed":
"-0.11", "Northwindspeed unit": "m/s",
"Eastwindspeed": "-0.25", "Eastwindspeed unit": "m/s",
"Batteryvoltage": "2.87", "Batteryvoltage unit": "V"

people counter | "RightToLeft": 0, "LeftToRight": 0, 60 people counter/7

"LeftToRight SUM": 327, "RightToLeft SUM": 99,
"SBX BATT": 0, "SBX PV": 0, "DIFF": 228, "TEMP":
21

people counter/7
people counter/8
people counter/4

smart_water "SequenceNumber": 150, "Length": 29, "Batterylevel": | 10 smart_water/49
"95", "Batterylevel unit": "%", "WaterpH": "9.77",
"WaterpH_unit": "nan", "Disolvedoxygen": "84.9",
"Disolvedoxygen unit": "%", "WaterConductivity":
"-6486.1", "WaterConductivity unit": "uS/cm",
"ORP(P&S!SOCKETE)": "0.337",
"ORP(P&S!SOCKETE) unit": "voltage",
"WaterTemperature": "15.04",
"WaterTemperature unit": "°C"
smart_water lon | "SequenceNumber": 253, "Length": 24, "Batterylevel": | 10 smart_water lon/
"98", "Batterylevel unit": "%", "Ammonium": "0.0",
"Ammonium_unit": "ppm", "Nitritelons": "0.0",
"Nitritelons_unit": "ppm", "Chloridelons": "0.0",
"Chloridelons_unit": "ppm", "WaterTemperature":
"14.9", "WaterTemperature unit": "°C"
outdoor env "SequenceNumber": 11, "Length": 48, 10 outdoor_env/75

"Averagewinddirection": "270",
"Averagewinddirection_unit": "*", "Averagewindspeed":
"0.01", "Averagewindspeed unit": "m/s",
"Precipitationtotal": "0.0", "Precipitationtotal unit":
"mm", "Precipitationintensity": "0.0",
"Precipitationintensity unit": "mm", "Solarradiation":
"0", "Solarradiation_unit": "W/m?",
"Barometricpressure": "1017.8",

36

"Barometricpressure_unit": "hPa", "AbsoluteHumidity":
"8.88", "AbsoluteHumidity unit": "gm-3",
"Relativehumidity": "46", "Relativehumidity unit":
"%", "Airdensity": "1.2", "Airdensity unit": "Kgm-3",
"Airtemperature": "21.7", "Airtemperature unit": "°C",
"Batterylevel": "100", "Batterylevel unit": "%"

indoor_env

"Temperature": 13.7, "Temperature_unit": "°C",
"Humidity": 75, "Humidity unit": "%RH",
"AmbientLight": 0, "AmbientLight_unit": "lux",
"Pressure": 1018, "Pressure_unit": "mbar",
"VolatileOrganicCompounds": 25,
"VolatileOrganicCompounds_unit": "IAQ", "bVOC":
0.5, "bVOC_unit": "ppm", "CO2": 500.0, "CO2_unit":
"ppm", "Oxygen": 207, "Oxygen_unit": "%",
"CarbonDioxide": 1012, "CarbonDioxide unit":
"CarbonDioxide", "PM1.0": 5.93, "PM1.0_unit":
"ng/m*", "PM2.5": 6.83, "PM2.5_unit": "pg/m*",
"PM4.0": 7.27, "PM4.0_unit": "pug/m*", "PM10.5":
7.36, "PM10.5_unit": "ug/m*"

60

indoor_env/76
indoor_env/77
indoor_env/78

traffic_counter

"SBX BATT": 0, "SBX_PV": 0, "TEMP": 22,
"Left0 CNT": 0, "Left0_AVG": 0, "Right0 CNT": 0,
"Right0 AVG": 0, "Leftl CNT": 0, "Left] AVG": 0,
"Right] CNT": 0, "Right] AVG": 0, "Left2 CNT": 0,
"Left2 AVG": 0, "Right2 CNT": 0, "Right2 AVG": 0,
"Left3_ CNT": 0, "Left3_AVG": 0, "Right3_CNT": 0,
"Right3 AVG": 0

60/300
/600

traffic_counter/6(
traffic_counter/6
traffic_counter/6.
traffic_counter/6:
traffic_counter/6:
traffic_counter/6!
traffic_counter/6¢
traffic_counter/6
traffic_counter/6¢
traffic_counter/6¢

Table 2. The example of sensor data collected

We use the following naming conventions in influxdb:
e database name: sensor_data

measurement: sensor type in Table 2
time: 1ISO8601 format
tags: “topic”: mqtt topic int Table 2.

An example of querying data from influxdb is available below:

1614265996616588032

[cloNooNoNoNoNol
[clcNcNoNoNoNoNoNo)

[clcNcNoNoNoNoNoNo)

people_counter /70
people_counter /70
people_counter /70
people_counter /70
people_counter /70
people_counter /70
people_counter/70
people_counter/70
people_counter/70

For sea wave data, it stores in a postgreSQL. The information of the database is as
follows:

Database host and port: 192.168.9.71:5432
Database name: marina_test

Sea current profile table: marina_profile_080321
Sea wave table: marina_awac_wave_data 080321 2

