
LivingFog documentation
http://www.fogguru.eu/livingfog

11/04/2021
─

http://www.fogguru.eu/livingfog

1

LivingFog description 2
The design of software stack 2
Software stack running on kubernetes clusters 5
Software stack on Central Server PC 6

Installation guide 7
Preparing the raspberry Pis 7
Creating Kubernetes Cluster 9
Installing Chirpstack software and other software stacks 11
Configuring LoRa gateways 13

Installing Chirpstack gateway bridge on the LoRa gateways 17
Configure Chirpstack gateway bridge on the LoRa gateways 18

Add sensors to Chirpstack Application server 19

LivingFog Maintenance 23
Platform monitoring 23
Manual debugging using SSH 26

Use case: IoT Fablab 28
Hardware 28

LoRa Gateways and Fog clusters 29
Sensors 30

Data description 31

2

This documentation describes the LivingFog platform, including the platform description,
the deployment process with our open-sourced project, the basic maintenance of
LivingFog, and a use case of IoT Fablab.

LivingFog description

The design of software stack
The whole system can basically split into 3 levels of abstractions: LoRa sensors and
gateways, Raspberry Pi (RPi) Clusters and Central PC server. No specific software is installed
on LoRa gateways and sensors, but they need to be configured.

Raspberry Pi OS is installed on each RPi as a preparation. Then, Kubernetes 1.18 is installed
and configured on 5 to 10 RPis as a Fog node. The whole structure is shown in Figure 1.

Figure 1: Fog node cluster structure

We used Kubernetes: open-source container orchestration system for automating and
deploying our softwares. General Kubernetes structure is shown in Figure 2. One of the
machines (Raspberry pi in this case) should be set as a master node, while the remaining
ones can join it as a worker. Kubernetes installation and preparation step is explained in
the installation section below.

Figure 2: Kubernetes cluster structure

3

From the hardware point of view, the LivingFog platform can be visualized as shown in
Figure 3. The whole structure concerns the sensors connected to specific gateways,
gateway devices connected to specific Raspberry Pi (kubernetes) clusters, and Raspberry Pi
clusters are connected to Central Server PC.

Figure 3: Overview of the LivingFog Platform

There are a number of specific Softwares and stacks deployed and configured on raspberry
pi (kubernetes) clusters and Central Server PC.

Figure 4 shows the internal software structure, relation and data flow between the systems
and components. Each software component is described down below.

4

Figure 4: Software structure and relation between the systems.

5

Software stack running on kubernetes clusters
After the Kubernetes cluster creation, all the necessary softwares is installed. Software and
kubernetes code components are linked here:
https://github.com/FogGuru/livingfog/tree/main/chirpstack-kubernetes.

All the specific configurations for each component are mainly written in configMap.yml files
in their specific module.

Softwares installed on each cluster are:

● Chirpstack Application Server - The ChirpStack Application Server is a LoRaWAN
Application Server, compatible with the ChirpStack Network Server. It provides a
web-interface and APIs for management of users, organizations, applications,
gateways and devices.

Received uplink data is forwarded to one or multiple configured integrations.

● Chirpstack Network Server - The ChirpStack Network Server is a LoRaWAN Network
Server, responsible for managing the state of the network. It has knowledge of
device activations on the network and is able to handle join-requests when devices
want to join the network.

When data is received by multiple gateways, the ChirpStack Network Server will
de-duplicate this data and forward it as one payload to the ChirpStack Application
Server. When an application-server needs to send data back to a device, the
ChirpStack Network Server will keep these items in queue, until it is able to send to
one of the gateways.

● Chirpstack Gateway Bridge - The ChirpStack Gateway Bridge sits between the Packet
Forwarder and MQTT broker. It transforms the Packet Forwarder format (like the
Semtech UDP Packet Forwarder protocol) into a data-format used by the ChirpStack
components.

The Gateway bridge is not installed on RPi clusters. It’s installed and configured on
each Gateway device. More detailed explanation about configuration is in the
Installation section.

● MQTT broker - MQTT is a publish/subscribe messaging system. In our system, it acts
as a main messaging system, it’s in control of handling all the major data flow
between Chirpstack Gateway Bridge, Chirpstack Application and Network Servers,
and data parser python code.

● Postgres SQL - Acts as a main database for storing information about the devices
connected to the Chirpstack Application server.

● Redis - ChirpStack Network Server uses Redis for storing device-session data and
non-persistent data like distributed locks, deduplication sets and meta-data.

https://github.com/FogGuru/livingfog/tree/main/chirpstack-kubernetes

6

● Preprocessor Python code - Series of data parser scripts written on python and
deployed as a docker image. It’s role is to parse incoming hexadecimal numbers
from Chirpstack to MQTT, interpret them into readable values according to the
dataframe of each sensor, and forward them back into MQTT broker and InfluxDB.
More detailed explanation of the data parser is in the Data Description section.

● InfluxDB - We use InfluxDB to store historical measurements data coming from the
sensors.

● Monitoring stack - Its purpose is to monitor each machines (PRi) and kubernetes
cluster and kubernetes namespaces. Main components are Prometheus,
Kube-state-metrics (node-port) and node-exporter. It’s sending the metrics to the
central Prometheus running on Server PC.

Software stack on Central Server PC
Server PC is acting as a centralized monitoring machine. All the software components are
linked here: https://github.com/FogGuru/livingfog/tree/main/central-server.

Softwares installed on the PC are:

● InfluxDB - We store all the historical sensor measurements coming from multiple
RPi clusters on centralized influxDB as a backup. It’s also used as a data source for
creating sensor dashboards on Grafana.

● Monitoring stack - Prometheus Federation collecting all metrics from each RPi
device and clusters. Also used as a data source for creating monitoring dashboard
on Grafana

● Grafana Dashboard - Open-source, interactive dashboard for managing, visualizing
and analyzing everything.

Grafana dashboard can be found at http://192.168.9.71:3002/ with the username:
admin Password: FogGuru2020

We have prepared 2 main types of dashboards, namely: Sensor data and platform
monitoring. There are 12 types of Sensor data dashboards and it can be found in
la-marina-sensors folder in a dashboard. Also there are 2 types of platform
monitoring dashboards and it can be found in LivingFog platform monitoring folder.

The system monitoring is explained in system management section below.

Software stacks on either RPi clusters or Server PC are deployed as a Kubernetes
deployments, services and pods.

https://github.com/FogGuru/livingfog/tree/main/central-server
http://192.168.9.71:3001/

7

Installation guide
This section covers the installation and configuration of lora gateway software stack.

Lora gateway software stack architecture was explained in the section above.

Installation and configuration of lora gateway software stack consists of 5 main steps:

1. Preparation of each raspberry pi device in order to create the cluster.
2. Create Kubernetes cluster on every Pi cluster by running the provided ansible script.
3. Installation of actual chirpstack gateway software and other software stack on a

cluster.
4. Configuration of LoRa gateway device to connect to cluster.
5. Enable the connection connection between the cluster, LoRa gateway and sensor

devices using Chirpstack application server user interface (UI).

Preparing the raspberry Pis
It’s possible to acquire a pre-built raspberry pi cluster such as Picocluster, but the
pre-installation step must be carried out on each Raspberry Pi (RPI).

1. If you’re starting from installing the OS on RPi, download the latest raspbian buster
image and burn the image using etcher or similar tools. If you’re using OS
pre-installed RPi, skip steps 1 and 2 and go to step 3.

a. Run etcher to burn images:

https://www.picocluster.com/
https://www.raspberrypi.org/software/
https://www.balena.io/etcher/

8

b. Or run etcher from cli (MAC) as admin to burn images by:

$ sudo /Applications/balenaEtcher.app/Contents/MacOS/balenaEtcher

2. Allow ssh in SD cards

$ touch /Volumes/boot/ssh

3. SSH into each Pis

Note: you have to have access to the same network that you’re accessing to the cluster.

$ ssh pi@raspberrypi.local

4. Add the following text inside the file `/boot/cmdline.txt` with sudo

cgroup_enable=memory

5. Update the `/etc/network/interfaces` file for setting specific IP address. For
example:

auto eth0

iface eth0 inet static

address 192.168.1.10

netmask 255.255.255.0

gateway 192.168.1.1

dns-nameservers 192.168.1.1 8.8.8.8

6. Update the `/etc/hosts` with your cluster's of IP addresses

192.168.1.10 pc0

192.168.1.11 pc1

192.168.1.12 pc2

...

192.168.1.N pcN

9

7. Edit the hostname and password by editing `raspi-config`

$ sudo raspi-config

8. Reboot

$ sudo reboot

9. Lastly, enable passwordless connection by copying your authorized key from your
machine

$ ssh-copy-id pi@name

The Pi is now ready to run ansible scripts.

Creating Kubernetes Cluster
Make sure you have installed Ansible 2.4.0+ on your host machine.

1. Creating GlusterFS volume

We use glusterfs on the pico clusters as the file system on which Kubernetes creates
PersistentVolumes.

Before running Ansible, make sure if there are any gluster volumes running by using the
following command on the master node.

$ sudo gluster volume status

If there are any gluster volumes, first stop and delete them. For example, run the following
command to stop and delete the volumes `mosquitto_volume`, `postgre_volume` and
`influxdb_volume`:

$ sudo gluster volume stop mosquitto_volume

$ sudo gluster volume stop postgre_volume

$ sudo gluster volume stop influxdb_volume

$ sudo gluster volume delete mosquitto_volume

$ sudo gluster volume delete influxdb_volume

$ sudo gluster volume delete postgre_volume

Also, make sure that the glusterfs volume replicas are set to `3` when running on
PicoCluster10, and `2` when running on PicoCluster5. Edit all instances of `replicas` in file
`roles/glusterfs/master/tasks/main.yml`

10

2. Configuring Host files

Add the system information gathered above into a file called `hosts.ini`. For example:

[master]

192.16.35.12

[node]

192.16.35.[10:11]

[kube-cluster:children]

master

node

If you're working with ubuntu, add the following properties to each host
`ansible_python_interpreter='python3'`:

[master]

192.16.35.12 ansible_python_interpreter='python3'

[node]

192.16.35.[10:11] ansible_python_interpreter='python3'

[kube-cluster:children]

master

node

Before continuing, edit `group_vars/all.yml` to your specified configuration. For example,
we choose to run `flannel` instead of calico, and thus:

Network implementation('flannel', 'calico')

network: flannel

Note: Depending on your setup, you may need to modify `cni_opts` to an available
network interface. By default, `kubeadm-ansible` uses `eth1`. Your default interface may
be `eth0`.

Note: Edit the "master_vpn" variable in `all.yaml` file. The value should be equal to the IP
address of the master node in the VPN interface.

3. After going through the setup, run the `site.yaml` playbook:

$ ansible-playbook -i hosts.ini site.yaml

...

==> master1: TASK [addon : Create Kubernetes dashboard deployment]

==> master1: changed: [192.16.35.12 -> 192.16.35.12]

==> master1:

==> master1: PLAY RECAP

11

==> master1: 192.16.35.10 : ok=18 changed=14 unreachable=0

failed=0

==> master1: 192.16.35.11 : ok=18 changed=14 unreachable=0

failed=0

==> master1: 192.16.35.12 : ok=34 changed=29 unreachable=0

failed=0

4. Verify cluster is fully running using kubectl:

$ export KUBECONFIG=~/admin.conf

$ kubectl get node

NAME STATUS AGE VERSION

master1 Ready 22m v1.6.3

node1 Ready 20m v1.6.3

node2 Ready 20m v1.6.3

$ kubectl get po -n kube-system

NAME READY STATUS RESTARTS AGE

etcd-master1 1/1 Running 0 23m

...

5. Changing the password

If you need to change the default password of the user picocluster, run from
`kubeadm-ansible` directory:

$ ansible-playbook -i hosts.ini change-password.yml --extra-vars

newpassword=NEWPASSWORD

The cluster is running a Kubernetes cluster and ready for installing the software stack.
Check this repository out for more information on installing and debugging.

Installing Chirpstack software and other software stacks
In order to deploy chirpstack and software stack with kubernetes:

1. Replace your cluster ip with [myclusterIP] value

myclusterIP is the host IP address, acts as a manager in GlusterFS

$ export myclusterIP=192.168.1.10

https://github.com/jazz09/kube-deploy-lora/tree/main/kubeadm-ansible

12

2. Generate GlusterFS Endpoints files

Edit the IP address range in the `generate_glusterfs_endpoints.sh` file first using a text
editor

for i in {11..19} -> change your cluster address range here

do

echo "- addresses:

- ip: 192.168.9.$i

ports:

3. Run the glusterFS generation script

$./generate_glusterfs_endpoints.sh

4. Deploy the stack using the script

Run following to deploy all software stack

$ sh ./deploy_all.sh

5. After running the deployment, wait for them to fully deployed, then make sure all
the pods, services and deployments are running

$ kubectl get pods

$ kubectl get deployments

$ kubectl get services

6. After the pod creation, create the databases:

$ sh ./postgres/create_db.sh

$ sh ./influxdb/create_users.sh

7. Deleting

If you wish to delete the stack, run following to delete all:

$ sh ./delete_all.sh

8. Exposing to external IPs

13

Kubernetes services are exposing external IPs to access from outside, you can
enable/disable exposing IP addresses at the end of following files:

port:8080 /chirpstack-application-server/service.yml

port:8000 /chirpstack-network-server/service.yml

port:9090 /monitoring/prometheus.yaml

port:3000 /monitoring/grafana.yaml

port:1883 /mosquitto/service.yml

port:8086 /influxdb/service.yml

port:1880 /nodered/service.yml

End of the file looks like

externalIPs:

- $myclusterIP

Configuring LoRa gateways
LoRa gateways are configured via the web interface.

1. Open the web interface of the LoRa gateway using its IP address (E.g.,
https://192.168.9.2/)

2. Ignore the error regarding the certificate. You should see the log in screen
3. Login using the user name and password
4. Go to the LoRaWAN section

https://192.168.9.2/

14

5. Select “PACKET FORWARDER” for LoRa Mode
6. Select EU868 for Channel plan
7. Set Upstream and Downstream ports

15

8. Leave the rest as is and click on “Submit” to save
9. Go to Setup -> Network Interfaces

10. Click on the edit icon to the right of the “eth0” interface

16

11. Configure as shown in the screenshot with the IP address of the LoRa gateway and
click on “Submit” to save.

12. Go to Administration -> Access Configuration, and check the boxes for SSH and
ICMP access as shown in the screenshot below.

17

13. Click Submit to save
14. Finally, click on “Save and Apply” on the left to save the configuration. If prompted to

restart the gateway, please do.

Installing Chirpstack gateway bridge on the LoRa gateways

1. First, login to the LoRa gateway over ssh

Eg. ssh fogguru@192.168.9.2

2. Update the opkg cache:

sudo opkg update

18

3. Download the latest chirpstack-gateway-bridge .ipk package from:
https://artifacts.chirpstack.io/vendor/multitech/conduit/.

Example (assuming you want to install
chirpstack-gateway-bridge_3.10.0-r1_arm926ejste.ipk):

wget https://artifacts.chirpstack.io/vendor/multitech/conduit/chirpstack-gatewa

4. Install it using the opkg package-manager utility. Example (assuming the same .ipk
file):

opkg install chirpstack-gateway-bridge_3.10.0-r1_arm926ejste.ipk

Configure Chirpstack gateway bridge on the LoRa gateways

The Chirpstack gateway bridge on each LoRa gateway needs to be configured so that it can
connect to the fog clusters.

1. First, login to the LoRa gateway over ssh

Eg. ssh fogguru@192.168.9.2

2. Open the configuration file for editing

sudo nano /var/config/chirpstack-gateway-bridge/chirpstack-gateway-bridge.toml

3. Update the udp port selected for the LoRa packet forwarder

udp_bind = "0.0.0.0:1782"

4. Edit the information about MQTT server (E.g., to connect to MQTT on 192.168.9.10)

Generic MQTT authentication.

[integration.mqtt.auth.generic]

MQTT server (e.g. scheme://host:port where scheme is tcp, ssl or ws)

server="tcp://192.168.9.10:1883"

Connect with the given username

username="USERNAME"

Connect with the given password

password="PASSWORD"

19

5. Save the file and exit
6. Restart the Chirpstack gateway bridge service

sudo /etc/init.d/chirpstack-gateway-bridge restart

Add sensors to Chirpstack Application server
Chirpstack Application server is available on all fog clusters. However, at the moment
sensors are added on three of them.

To open Chirpstack Application server, from your browser open one of the URL of
chirpStack Application, i.e., http://192.168.9.10:8080 with username and password.

After you log in, you will see the screen below

To add new sensors,

● First create a device profile. To do so, click on “Device-profiles” on the left, and then
click on the “CREATE” button.

http://192.168.9.10:8080

20

● Complete the fields in the “GENERAL” tab
● If the sensor uses OTAA for joining the LoRa network (check with the device

manual), go to “JOIN OTAA/ABP) tab and check the “Device supports OTAA” checkbox
● Click on “CREATE DEVICE PROFILE” to finish

● Create an “application” by going to Applications -> “CREATE”
● Complete the fields, and click on “CREATE APPLICATION” to complete

21

Add a device to the application

● Click on the newly created application, then create on “CREATE” under the “Devices”
tab

22

● Click on “CREATE DEVICE” after completing the form. You may need to get the
information about the sensor from the vendor.

● You will be asked to enter the Keys for the device. Fill the device key you got from
the vendor and click on “SET DEVICE-KEYS”

23

LivingFog Maintenance

Platform monitoring
Most straightforward way of monitoring or checking the system health is to access
dashboards running on Server PC. After configuring the VPN on your machine, you’re able
to access the system monitoring dashboards.

To access dashboards, type the URL of grafana, i.e., http://192.168.9.71:3002/ on your
browser, with the credentials of username and password.

There are 2 main types of dashboards:

1. Sensor data: 12 types of Sensor data dashboards and it can be found in
la-marina-sensors folder in a dashboards management.

2. Platform monitoring dashboards: 3 types of platform monitoring dashboards and it
can be found in LivingFog platform monitoring folder

http://192.168.9.71:3001/

24

a. Kubernetes: Namespace usage

This dashboard is mainly used for tracking the usage for hackathon participants. But it can
be used for keeping track of the resource usage of your new namespace.

Figure 7: Kubernetes namespace usage overview

b. Kubernetes: Pod overview

In LivingFog platform, kubernetes pods/deployments/services are the applications
deployed on the clusters.

This dashboard helps keeping track of pods and their activities. It shows the resource
usage and the status of the pods running on specific clusters.

For example, if you notice some pods are failing, you might want to restart that specific pod
manually using ssh connection and kubernetes command.

25

Figure 8: Kubernetes pods status

Figure 9: Kubernetes pods resource usage by cluster

c. Picos monitoring

In the LivingFog platform, Fog clusters are built on Raspberry Pi machines. Picos Monitoring
dashboard will help monitor the activities of the machines.

You can check the performance and the status of the clusters by selecting the Cluster and
Node.

26

Figure 10: Raspberry Pi machines resource usage by cluster

Note: If you want to add a new dashboard, you can add it using Prometheus and InfluxDB
data sources, which are already provided.

Note: There are no alert systems implemented yet. Alerts are added and configured in
the Alert Tab of any dashboard graph panel, letting you build and visualize an alert using
existing queries. To persist your alert rule changes remember to save the dashboard.

Manual debugging using SSH
All the debugging and stopping/starting the services running on the machines should be
done using SSH. Otherwise, you have to be physically present on site to check the platform.

By configuring the VPN on your machine, you’re also able to connect to most of the
hardware using SSH connection. Table 3 shows available machines and their SSH
credentials.

Log in to desired machine using SSH by:

$ ssh [username]@[IP_address]

[username]@[IP_address]'s password: [password]

For example:

$ ssh picocluster@192.168.9.10

27

picocluster@192.168.9.10's password:

Software stacks on either RPi clusters or Server PC are deployed as Kubernetes
deployments, services and pods. After logging in using SSH to the certain machine, you will
be able to use kubernetes commands to check if the pods are running.

For example:

picocluster@pc0:~ $ kubectl get pods

NAME READY STATUS RESTARTS AGE

chirpstack-application-server-6cf695ff77-whblf 1/1 Running 0 4d5h

chirpstack-network-server-548dcb59c9-clhlp 1/1 Running 0 4d5h

data-parser-6c8c47d7ff-p5rjj 1/1 Running 15 12d

influx-574cfd7496-228bn 1/1 Running 0 12d

mosquitto-6c88b5b6f4-t2kpj 1/1 Running 0 12d

nodered-7b6cf58d46-5m2wf 1/1 Running 0 26d

postgres-7747f9b7bf-j72qn 1/1 Running 0 4d5h

redis 1/1 Running 0 26d

yourpod 1/1 Running 2 41d

Same for starting/stopping pods/services/deployments. To start/stop/restart the
pods/services/deployments:

You can run the following commands one by one to start the deployments on RPis

$ kubectl apply -f ./mosquitto/mosquitto-glusterfs-endpoint.yaml

$ kubectl apply -f ./mosquitto/storage.yml

$ kubectl apply -f ./mosquitto/configmap.yaml

$ kubectl apply -f ./mosquitto/deployment.yml

$ envsubst < ./mosquitto/service.yml | kubectl apply -f -

$ kubectl apply -f ./influxdb/influxdb-glusterfs-endpoint.yaml

$ kubectl apply -f ./influxdb/storage.yml

$ kubectl apply -f ./influxdb/deployment.yml

$ envsubst < ./influxdb/service.yml | kubectl apply -f -

$ kubectl apply -f ./postgres/

$ kubectl apply -k redis/.

$ kubectl apply -f ./chirpstack-network-server/configMap.yml

$ kubectl apply -f ./chirpstack-network-server/deployment.yml

$ envsubst < ./chirpstack-network-server/service.yml | kubectl apply -f -

28

$ kubectl apply -f ./chirpstack-application-server/configMap.yml

$ kubectl apply -f ./chirpstack-application-server/deployment.yml

$ envsubst < ./chirpstack-application-server/service.yml | kubectl apply -f

-

$ kubectl apply -f ./monitoring/configmap.yaml

$ kubectl apply -f ./monitoring/kube-state-metrics.yaml

$ kubectl apply -f ./monitoring/node-exporter.yaml

$ kubectl apply -f ./monitoring/rbac.yaml

$ envsubst < ./monitoring/grafana.yaml | kubectl apply -f -

$ envsubst < ./monitoring/prometheus.yaml | kubectl apply -f -

$ kubectl apply -f ./nodered/deployment.yml

$ envsubst < ./nodered/service.yml | kubectl apply -f -

You can run the following commands to stop each deployments RPis

$ kubectl delete -f ./mosquitto/

$ kubectl delete -f ./influxdb/

$ kubectl delete -f ./postgres/

$ kubectl delete -k redis/.

$ kubectl delete -f ./chirpstack-network-server/

$ kubectl delete -f ./chirpstack-application-server/

$ kubectl delete -f ./monitoring/

$ kubectl delete -f ./nodered/

$ kubectl delete pvc mosquitto postgres-pv-claim postgresinit-pv-claim

$ kubectl delete pv mosquitto-pv-volume $ postgres-pv-volume

postgresinit-pv-volume

Use case: IoT Fablab

FogGuru has applied the LivingFog platform in IoT Fablab in Las Naves, where a number
of IoT heterogeneous sensors are installed in La Marina de València to measure and
process data about water quality, wind, sea wave, outdoor and indoor environment,
people counter, and traffic.

Hardware
The hardware used in IoT Fablab are listed as follows:

29

LoRa Gateways and Fog clusters

No Device Model
IP Address / IP
Address Range Location

1 LoRa Gateway 1

Multitech
MTCDTIP-L4E1-267A-868 LTE Cat
4 AEP Conduit IP67 192.168.9.2 Varadero

2 LoRa Gateway 2

Multitech
MTCDTIP-L4E1-267A-868 LTE Cat
4 AEP Conduit IP67 192.168.9.3 Tinglado 2

3 LoRa Gateway 3
Multitech Conduit -
MTCDT-L4E1-247A-868-EU-GB 192.168.9.4 Tinglado 5

4 LoRa Gateway 5
Multitech Conduit -
MTCDT-L4E1-247A-868-EU-GB 192.168.9.6 Tinglado 2

5 Pico Cluster 1

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

192.168.9.10 -
192.168.9.19 Varadero

6 Pico Cluster 2

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

192.168.9.20 -
192.168.9.29 Varadero

7 Pico Cluster 3

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

192.168.9.30 -
192.168.9.39 Varadero

8 Pico Cluster 4

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

192.168.9.40 -
192.168.9.49 Varadero

9 Pico Cluster 5

Pico 10H cluster RPi4,
assembled cube + 320GB of SD
storage

192.168.9.50 -
192.168.9.59 Varadero

10 Pico Cluster 6
Pico 5 Raspberry PI4 4GB + 160
GB of SD storage

192.168.9.60 -
192.168.9.64 Varadero

11 Pico Cluster 7
Pico 5 Raspberry PI4 4GB + 160
GB of SD storage

192.168.9.65 -
192.168.9.69 Varadero

12 Desktop server

Dell Optiplex 9020 Desktop PC
Computer Intel Core i7-4770
3.40 Ghz 32GB Ram 240GB SSD
+ 1Tb SSHD 192.168.9.71 Varadero

30

Sensors

No sensor name Model Location (latitude, longitude)

1 PEOPLE COUNTER 1

Parametric Radar People
Counter with LoRaWAN® for
Outdoor Applications
PCR2-EU868-OD 39.46274, -0.32237

2 PEOPLE COUNTER 2

Parametric Radar People
Counter with LoRaWAN® for
Outdoor Applications
PCR2-EU868-OD 39.4614, -0.33023

3 PEOPLE COUNTER 3

Parametric Radar People
Counter with LoRaWAN® for
Outdoor Applications
PCR2-EU868-OD 39.4602, -0.33219

4 PEOPLE COUNTER 4

Parametric Radar People
Counter with LoRaWAN® for
Outdoor Applications
PCR2-EU868-OD 39.45685, -0.32967

5 WIND SENSOR 1 DecentLab DL-ATM22 39.46097, -0.32424

6 WIND SENSOR 2 DecentLab DL-ATM22 39.46102, -0.33087

7 WIND SENSOR 3 DecentLab DL-ATM22 39.45655, -0.32962

8 SMART WATER
Libelium Smart Water
LoRaWAN 39.45878, -0.33034

9 SMART WATER ION
Libelium Smart Water Ion
LoRaWAN 39.46105, -0.32553

10 TRAFFIC COUNTER 1 Parametric TCR-LS LoRaWAN 39.46273, -0.32237

11 TRAFFIC COUNTER 2 Parametric TCR-LS LoRaWAN 39.46253, -0.32424

12 TRAFFIC COUNTER 3 Parametric TCR-LS LoRaWAN 39.45969, -0.33236

13 TRAFFIC COUNTER 4 Parametric TCR-LS LoRaWAN 39.45654, -0.33011

14 TRAFFIC COUNTER 5 Parametric TCR-LS LoRaWAN 39.45568, -0.32786

15 TRAFFIC COUNTER 6 Parametric TCR-LS LoRaWAN 39.45946, -0.33265

16 TRAFFIC COUNTER 7 Parametric TCR-LS LoRaWAN 39.45639, -0.33044

17 TRAFFIC COUNTER 8 Parametric TCR-LS LoRaWAN 39.45564, -0.33004

18 TRAFFIC COUNTER 9 Parametric TCR-LS LoRaWAN 39.45571, -0.32895

31

19 TRAFFIC COUNTER 10 Parametric TCR-LS LoRaWAN

20 WEATHER STATION

Libelium-Gill-EX-Machina
Smart Weather Forecast
LoRaWAN Solution Kit 39.46125, -0.32293

21

INDOOR
ENVIRONMENT SENSOR
1

enLink Air Wireless Air
Quality Sensor 39.4611, -0.3242

22

INDOOR
ENVIRONMENT SENSOR
2

enLink Air Wireless Air
Quality Sensor 39.46086, -0.33106

23

INDOOR
ENVIRONMENT SENSOR
3

enLink Air Wireless Air
Quality Sensor 39.45595, -0.32859

24
Sea current and wave
sensor Nortek AWAC 1MHz 39.45947, -0.30955

Data description

Taking the sensors installed in La Marina as examples, Figure 5 shows the flow of data
collection in our fog platform. First, all the sensors and Lora gateways are configured and
installed in La Marina. Next, each sensor sends collected data through LoRaWAN to the
Chirpstack that it joins during the initialization. The uploaded sensor data is in json
format following LoRaWan protocol. Then a data parser decodes the data into
hexadecimal numbers and interprets them into readable values according to the
dataframe of each sensor. Last, the readable sensor data are sent to MQTT with a unique
topic and also used to update the database in influxDB. Both the real-time data in MQTT
and historical data in influxDB will be used to design fog applications in hackathon and
Fablab.

32

Figure 5: The flow of data collection in LivingFog.

The locations of sensors and gateways are shown as Figure 6 and are available on Google
Maps
https://www.google.com/maps/d/u/0/viewer?hl=en&mid=1qNpP2YknZCjX8HSA3X9bH20
DiGkwpuOx&ll=39.45943089803211%2C-0.3219128849847097&z=16

https://www.google.com/maps/d/u/0/viewer?hl=en&mid=1qNpP2YknZCjX8HSA3X9bH20DiGkwpuOx&ll=39.45943089803211%2C-0.3219128849847097&z=16
https://www.google.com/maps/d/u/0/viewer?hl=en&mid=1qNpP2YknZCjX8HSA3X9bH20DiGkwpuOx&ll=39.45943089803211%2C-0.3219128849847097&z=16

33

Figure 6: The locations of sensors and lora gateways

Table 1 shows the sensors and the measured parameters.

No. Device name Parameters
1 Sea wave sensor Sea wave height

Current speed
Pressure
Temperature

2 Outdoor environment sensors Average wind direction
Average wind speed
Precipitation total
Precipitation intensity
Solar radiation
Barometric pressure
Absolute humidity
Relative humidity
Air density
Air temperature

3 Wind sensor Wind speed
Wind direction
Maximum wind speed
Air temperature
Tilt angle X orientation

34

Tilt angle Y orientation
North wind speed
East wind speed
Battery voltage

4 Indoor environment sensors Temperature
Humidity
Light level
VOC's
bVOC
Barometric Pressure
CO2
O2
PM1.0, 2.5, 4.0,10.5

5 People counter Right To Left

Left To Right
Left To Right SUM
Right To Left SUM
SBX BATT
SBX PV
DIFF
TEMP

6 Water quality sensor Water pH
Dissolved oxygen
Water Conductivity
ORP(P&S!SOCKETE)
Water Temperature
SilverIons
ChlorideIons
FluorideIons

7 Traffic sensor SBX BATT
SBX PV
TEMP

Left CNT (the following parameters are for levels from 0 to 3
Left AVG
Right CNT

Right AVG
Table 1: The sensors deployed at La Marina and parameters measured

Furthermore, for each type of sensor, their detailed information about the sensor type,
frequency, MQTT topics, and sample data are provided in Table 2.

35

Sensor type Sensor data Freque
ncy/s

MQTT topics

wind "Windspeed": "0.28", "Windspeed_unit": "m/s",
"Winddirection": "246.9", "Winddirection_unit": "º",
"Maximumwindspeed": "0.35",
"Maximumwindspeed_unit": "m/s", "Airtemperature":
"12.3", "Airtemperature_unit": "ºC",
"TiltangleXorientation": "-2.8",
"TiltangleXorientation_unit": "º",
"TiltangleYorientationn": "-3.0",
"TiltangleYorientationn_unit": "º", "Northwindspeed":
"-0.11", "Northwindspeed_unit": "m/s",
"Eastwindspeed": "-0.25", "Eastwindspeed_unit": "m/s",
"Batteryvoltage": "2.87", "Batteryvoltage_unit": "V"

60 wind/73-1
wind/73-2
wind/73-3

people_counter "RightToLeft": 0, "LeftToRight": 0,
"LeftToRight_SUM": 327, "RightToLeft_SUM": 99,
"SBX_BATT": 0, "SBX_PV": 0, "DIFF": 228, "TEMP":
21

60 people_counter/7
people_counter/7
people_counter/8
people_counter/4

smart_water "SequenceNumber": 150, "Length": 29, "Batterylevel":
"95", "Batterylevel_unit": "%", "WaterpH": "9.77",
"WaterpH_unit": "nan", "Disolvedoxygen": "84.9",
"Disolvedoxygen_unit": "%", "WaterConductivity":
"-6486.1", "WaterConductivity_unit": "μS/cm",
"ORP(P&S!SOCKETE)": "0.337",
"ORP(P&S!SOCKETE)_unit": "voltage",
"WaterTemperature": "15.04",
"WaterTemperature_unit": "ºC"

10 smart_water/49

smart_water_lon "SequenceNumber": 253, "Length": 24, "Batterylevel":
"98", "Batterylevel_unit": "%", "Ammonium": "0.0",
"Ammonium_unit": "ppm", "NitriteIons": "0.0",
"NitriteIons_unit": "ppm", "ChlorideIons": "0.0",
"ChlorideIons_unit": "ppm", "WaterTemperature":
"14.9", "WaterTemperature_unit": "ºC"

10 smart_water_lon/

outdoor_env "SequenceNumber": 11, "Length": 48,
"Averagewinddirection": "270",
"Averagewinddirection_unit": "º", "Averagewindspeed":
"0.01", "Averagewindspeed_unit": "m/s",
"Precipitationtotal": "0.0", "Precipitationtotal_unit":
"mm", "Precipitationintensity": "0.0",
"Precipitationintensity_unit": "mm", "Solarradiation":
"0", "Solarradiation_unit": "W/m²",
"Barometricpressure": "1017.8",

10 outdoor_env/75

36

"Barometricpressure_unit": "hPa", "AbsoluteHumidity":
"8.88", "AbsoluteHumidity_unit": "gm-3",
"Relativehumidity": "46", "Relativehumidity_unit":
"%", "Airdensity": "1.2", "Airdensity_unit": "Kgm-3",
"Airtemperature": "21.7", "Airtemperature_unit": "ºC",
"Batterylevel": "100", "Batterylevel_unit": "%"

indoor_env "Temperature": 13.7, "Temperature_unit": "°C",
"Humidity": 75, "Humidity_unit": "%RH",
"AmbientLight": 0, "AmbientLight_unit": "lux",
"Pressure": 1018, "Pressure_unit": "mbar",
"VolatileOrganicCompounds": 25,
"VolatileOrganicCompounds_unit": "IAQ", "bVOC":
0.5, "bVOC_unit": "ppm", "CO2": 500.0, "CO2_unit":
"ppm", "Oxygen": 207, "Oxygen_unit": "%",
"CarbonDioxide": 1012, "CarbonDioxide_unit":
"CarbonDioxide", "PM1.0": 5.93, "PM1.0_unit":
"µg/m³", "PM2.5": 6.83, "PM2.5_unit": "µg/m³",
"PM4.0": 7.27, "PM4.0_unit": "µg/m³", "PM10.5":
7.36, "PM10.5_unit": "µg/m³"

60 indoor_env/76
indoor_env/77
indoor_env/78

traffic_counter "SBX_BATT": 0, "SBX_PV": 0, "TEMP": 22,
"Left0_CNT": 0, "Left0_AVG": 0, "Right0_CNT": 0,
"Right0_AVG": 0, "Left1_CNT": 0, "Left1_AVG": 0,
"Right1_CNT": 0, "Right1_AVG": 0, "Left2_CNT": 0,
"Left2_AVG": 0, "Right2_CNT": 0, "Right2_AVG": 0,
"Left3_CNT": 0, "Left3_AVG": 0, "Right3_CNT": 0,
"Right3_AVG": 0

60/300
/600

traffic_counter/60
traffic_counter/61
traffic_counter/62
traffic_counter/63
traffic_counter/64
traffic_counter/65
traffic_counter/66
traffic_counter/67
traffic_counter/68
traffic_counter/69

Table 2. The example of sensor data collected

We use the following naming conventions in influxdb:
● database name: sensor_data
● measurement: sensor type in Table 2
● time: ISO8601 format
● tags: “topic”: mqtt topic int Table 2.

An example of querying data from influxdb is available below:

37

For sea wave data, it stores in a postgreSQL. The information of the database is as
follows:

● Database host and port: 192.168.9.71:5432
● Database name: marina_test
● Sea current profile table: marina_profile_080321
● Sea wave table: marina_awac_wave_data_080321_2

